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The temperature dependence of the Casimir force between a real metallic plate and a metallic sphere is
analyzed on the basis of optical data concerning the dispersion relation of metals such as gold and copper.
Realistic permittivities imply, together with basic thermodynamic considerations, that the transverse electric
zero mode does not contribute. This results in observable differences from the conventional prediction, which
does not take this physical requirement into account. The results are shown to be consistent with the third law
of thermodynamics, as well as being not inconsistent with current experiments. However, the predicted tem-
perature dependence should be detectable in future experiments. The inadequacies of approaches based onad
hoc assumptions, such as the plasma dispersion relation and the use of surface impedance without transverse
momentum dependence, are discussed.
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I. INTRODUCTION

There are many corrections that one in principle has to
take into account when calculating the Casimir force be-
tween two bodies; the corrections may come from finite tem-
peratures, finite extensions of the plates used in the experi-
ments, corrugations on the plates, etc.sRecent reviews of the
Casimir effect can be found in Refs.f1–3g.d The correction
that we will be concerned with in the present paper is the one
coming from finite temperatures. For the most part, we will
consider the temperature dependent Casimir force between a
compact sphere of radiusR and a plane substrate. The sphere
is situated at a fixed distancea from the planesa denotes the
minimum distance between the surfacesd. The sphere and the
substrate are assumed nonmagnetic, but we consider the case
where they may be made from different materials. We will
moreover assume the proximity force theoremf4g to hold;
this means thata must be much less thanR. sFor corrections
to this see Refs.f5–7g.d On experimental grounds it is evi-
dently desirable to calculate the Casimir forces in a realistic
way. We will here take advantage of the excellent numerical
dispersive data to which we have access for the materials
gold and coppersand also aluminumd scourtesy of Astrid
Lambrecht and Serge Reynaudd. We know how the permit-
tivity «sizd varies with imaginary frequencyz over seven
decades,zP f1011,1018g rad/s. We use these data to calcu-
late the forces at two different temperatures, namely, at room

temperatureT=300 K and atT=1 K. The latter temperature
is conveniently attainable numerically, and it can for all prac-
tical purposes be identified with zero temperature.sThe low-
est temperature that we actually tested wasT=0.2 K. If T
becomes lower, we leave the frequency domain for our nu-
merical dispersion data. It turns out that there are very small
deviations between calculated values of the force forT=1
and for 0.2 K.d We obtain in this way a realistic picture of the
finite temperature correction for these materials.

It ought to be emphasized that we are not adopting the
so-called modified ideal metalsMIM d model, which assumes
unit reflection coefficients for all but the transverse electric
sTEd zero modefsee Eq.s3.2d belowg; rather, we are using
real data together with the assertionsbased on thermody-
namical and electrodynamical argumentsd that the TE zero
mode is absent, as that is an isolated point which cannot be
extracted from data alone. Our approach is that which we
have followed in other recent papersf1,8,9g. The absence of
a TE zero mode contribution to the Casimir effect for a real
metal was discussed in detail in Ref.f8g, and also in Ref.
f10g. The result of this assumption, for instance, in the MIM
model is the presence of a linear temperature term in the
expression for the Casimir force between two planes, in the
limit where aT!1. The calculation for a real metal yields a
linear temperature correction for low, but not too low tem-
peratures, so that for very low temperatures the force and the
free energy have zero slope. By contrast, in the conventional
soldd model for an ideal metalsIM d the TE zero mode is
included, and it implies that this linear temperature term is
omitted. We ought to stress here that atT=0 the mentioned
difference between a MIM and an IM model goes away, as
the contributions from the zero frequency TE mode as well
as from the zero frequency TM mode become buried in an
integral over imaginary frequencies from zero to infinity.
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The experiments of immediate interest for the present
theory are the atomic force microscopysAFMd tests, per-
formed in particular by Mohideen and co-workersf11g. A
point that we ought to emphasize here is that previous analy-
ses have most likely overestimated the accuracy of the AFM
experiments. Thus the recent paper of Chenet al. f12g, which
is based upon a reanalysis of the experiment of Harriset al.
slisted in f11gd, claims the overall experimental precision to
be at the 1% level. In that apparatus a gold-coated polysty-
rene sphere mounted on a cantilever of an AFM was brought
close to a metallic surface and the deflection was measured.
However, as discussed in Refs.f1,13g, at the very short dis-
tance of 62 nmsthe minimum distanced the force ata
=62 nm+d differs from the force ata=62 nm by more than
3.5 pNsthe experimental uncertainty claimed by the authorsd
when d is larger than a few angstroms. This means thata
should have been measured with atomic precision in order to
correspond to the accuracy claimed. As for temperature cor-
rections, these were found inf12g to be negligible, this being
related to their acceptance of the plasma dispersion relation
for the material.

As the absence of the zero frequency TE mode has been
controversial, we give in Sec. IV a discussion of this in view
of recent work by Bezerraet al. f14g. They argue that this
mode should be present. In Sec. V we give additional support
to our arguments by showing that for a pair of anisotropic
polarizable particles the Casimir force can vanish in certain
directions as the temperature increases toward`, and al-
though there are regions of negative entropy connected with
the Casimir effect, there is no indication that thermodynam-
ics is violated. Violation of thermodynamics is used as an
argument by Bezerraet al. f14g to require the presence of the
TE zero mode. The inadequacy of using a surface impedance
approach without including transverse momentum depen-
dence is briefly reviewed in Sec. VI.

In this paper we put"=c=kB=1.

II. GENERAL FORMALISM AND DISPERSIVE
PROPERTIES

Let the sphere of radiusR be nonmagnetic, and have a
permittivity «1. As mentioned, the sphere is situated a dis-
tancea above a plane substrate; we let the nonmagnetic sub-
strate have permittivity«2. According to the proximity force
theoremf4g the attractive forceF between sphere and plane
at temperatureT can in the limita/R!1 be given approxi-
mately as the circumference of the sphere times the surface
free energy densityF in the parallel-plate configuration:F
=2pRFsad. Following essentially the notation of Ref.f8g we
can then write the force as

F =
R

ba2 o
m=0

`

8E
mg

`

y dyflns1 − D1
TMD2

TMe−2yd

+ lns1 − D1
TED2

TEe−2ydg. s2.1d

Herey is the dimensionless quantityy=qa, and

q = Îk'
2 + zm

2 , zm = 2pm/b, g = 2pa/b, s2.2d

k' being the component ofk parallel to the plates in the
parallel-plate configuration. Further,zm with b=1/T are the
Matsubara frequencies, andg is the dimensionless tempera-
ture. Superscripts TM and TE in Eq.s2.1d refer to the trans-
verse magnetic and electric modes. The prime on the sum
means that the zero mode has to be counted with half weight.
With the conventional Lifshitz variables defined as

s= Î« − 1 + p2, p = q/zm, s2.3d

we define the two kinds ofD’s, the reflection coefficients for
a single interface, as

DTM =
«p − s

«p + s
, DTE =

s− p

s+ p
, s2.4d

for each medium 1 and 2, respectively. If the two media are
equal,D1=D2 for each kind of mode, then

sDTMd2 ; Am, sDTEd2 ; Bm, s2.5d

whereAm, Bm are the TM, TE coefficients defined in Ref.
f8g. Note thats1=Î«1−1+p2, s2=Î«2−1+p2, with p=q/zm
being the same quantity in the two cases. The permittivities
«sizmd are functions of the imaginary Matsubara frequencies
zm. In the general case where the media are dispersive,DTM

andDTE depend both onp and on the Matsubara integerm. If
the media are nondispersive,DTM andDTE are functions ofp
only, independent ofm.

As a general warning, we mention that the proximity
theorem assumed here requiresa/R to be very small. Thus,
within the framework of the optical path method recently
considered by Jaffe and Scardicchiof5g, believed to be more
robust than the proximity approximation, disagreement with
the latter approximation was found already whena/R be-
came larger than a few percent, whereas the method they
propose agrees accurately with the recent exact numerical
result of Gieset al. f6g.

A. Dispersive properties

As mentioned in the Introduction, we will use accurate
numerical data for the variation of« with frequency for two
different substances: gold and copper. These data refer to
room temperature measurements. For gold, the data are
shown graphically in Refs.f8,15g. For frequencies up to
about 1.531015 rad/s snote that 1 eV=1.51931015 rad/sd,
the data are nicely reproduced by the Drude dispersion rela-
tion

«sizd = 1 +
vp

2

zsz + nd
, s2.6d

where for gold the plasma frequency isvp=9.0 eV and the
relaxation frequencyn=35 meV. Forz.231015 rad/s the
Drude curve, however, lies below the experimental curve.

All the dispersive data of which we are aware refer to
room temperature. Now, as we will be interested in the Ca-
simir force also at low temperatures, we are faced with the
problem of how to estimate the permittivity«siz ,Td under
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such circumstances. Numerical trials indicate rather gener-
ally that the Casimir force is very robust under variations in
the input values for the permittivity, but at least this issue is
a matter of principle. One possible way to proceed is to write
the permittivity as

«siz,Td = 1 +
vp

2

zfz + nsTdg
, s2.7d

and make use of the Bloch-Grüneisen formula for the tem-
perature dependence of the electrical resistivityr. This prob-
lem was discussed in Appendix D of Ref.f8g. One may in
this way estimate the temperature relaxation frequency to be,
in eV,

nsTd = 0.0847S T

Q
D5E

0

Q/T x5exdx

sex − 1d2 , s2.8d

whereQ=175 K for gold. This formula implies that«siz ,Td
is somewhat higher for lowT than forT=300 K scf. Fig. 1 in
f8gd, when the frequencies are less than about 1014 rad/s. It
is instructive to compare with the parallel-plate configura-
tion, where it is known that the most important frequencies
for the Casimir force are lying in the regionza,1. For a
=1 mm it corresponds toz<2.531014 rad/s. For smaller
gap widths—where the metallic properties of the medium
fade away and its plasma properties become more
dominant—it follows that the most important frequencies be-
come higher. Taking all things together, we expect that the
influence from the temperature variation innsTd is rather
small. Some numerical trials that we have done support this
expectation.

Another important point to be mentioned here is that the
Bloch-Grüneisen argument sketched above neglects the ef-
fect from impurities. These give rise to a nonzero resistivity
at zero temperaturef16g. This fact strengthens our argument
for setting the contribution from the Casimir force from the
TE zero mode for a metal equal to zero. The issue has been
considered in detail also by Sernelius and Boströmf10,17g.

As one can see from Fig. 2 inf10g, there exists a temperature
dependent contribution to the Casimir force from the TE
modes. This temperature dependence occurs for low frequen-
cies at low temperature and extends to higher frequencies
with increasing temperature. However, the temperature influ-
ence fades away before the the first nonzero Matsubara fre-
quency is reached. It is therefore permissible to neglect the
temperature dependence innsTd. What remains important in
n is the constant termnsT=0dÞ0 that is due to elastic scat-
tering. The consequence is that

z2f«sizd − 1g → 0 asz → 0, s2.9d

so froms2.4d DTE vanishes atm=0. If one neglects this cru-
cial constantnsT=0d, one can end up with a violation of the
Nernst heat theoremf18g. See also Boström and Sernelius
f19g for related discussion of these points.

Therefore, in the following we will restrict ourselves to
using the room temperature values forn throughout, even
when calculatingFsTd at different temperatures. Even with
this simplification, we point out that the temperature depen-
dence in the Casimir force turns up in a rather complex way;
namely, the temperature occurs at three different places:sid
in the prefactor in Eq.s2.1d; sii d in the lower limit of the
integral; siii d in the dependence ofD1

TM,TE and D2
TM,TE on T

via the Matsubara frequencies in the permittivity:«
=«si2pmTd.

III. NUMERICAL RESULTS

Figure 1 shows, for a gold sphere and a gold plate, how
the attractive forceFsad varies witha in the interval from
about 150 nm to 1mm, whenR=296mm andT=300 K. As
mentioned, the empirical data for«sizd are directly usable as
input in Eq. s2.1d. Whena=200 nm, the force is calculated
to be 67.22 pN.

A similar calculation can be made for a very low tempera-
ture, in order to show the magnitude of the temperature in-

FIG. 1. ForceF between a gold sphere and a
gold plate versus gapa, when T=300 K andR
=296mm.
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fluence in the force. We assume throughout, as mentioned
earlier, thatn=35 meV. UsingMATLAB we foundT=1 K to
be a numerically stable and reasonable lower limit. This tem-
perature is moreover low enough to be identifiable withT
=0 for all practical purposes.

We ought to stress that we choose to perform theT<0
calculation numerically, inserting realistic data for«sizd.
This is in principle different from the conventionalT=0 cal-
culation for an idealized metal, where one simply puts«
=` for all frequencies.sRecall that atT=0 the difference
between a MIM and an IM model goes away, because of the
very close spacing between the Matsubara frequencies.d

Rather than showing the calculated result forFs1 Kd ex-
plicitly, we show in Fig. 2 the difference between the forces,
DF, defined as

DF = Fs300 Kd − Fs1 Kd = uFs1 Kdu − uFs300 Kdu.

s3.1d

An important property seen from this curve is thatDF is
positive. The force is thusweakerat room temperature than
at T=0. This is the same effect as was found in Fig. 5 inf8g.
This behavior is thus a consequence of Lifshitz’ formula plus
realistic input data for the permittivity; there are no further
assumptions involved. Whena=200 nm, we find DF
=2.54 pN, which means that the force is reduced by 3.6%
compared to theT=0 case.

For larger distances,a=400 nm, the temperature effect
becomes larger. Thus fora=400 nm the force is 9.38 pN at
T=300 K and 10.19 pN atT=1 K, yielding a 7.9% reduction
at room temperature. Ata=1 mm, the corresponding num-
bers are 0.59 pN atT=300 K and 0.73 pN atT=1 K, which
means a 19% reduction. This agrees in magnitude well with
the temperature corrections in the case of parallel-plate ge-
ometry, as is seen from Fig. 5 in Ref.f8g.

Admitting an error of 10−8 in the m summation in Eq.
s2.1d, we found the necessary number of terms to be in ex-
cess of 34 000 in the case of the lowest separation investi-

gated numerically,a=50 nmsnot shown in the figured. When
a=200 nm, about 11000 terms were required. At larger sepa-
rations the necessary number of terms became considerably
reduced; thus the casea=1 mm corresponded to about 2700
terms.

The calculation of the force between a gold sphere and a
copper plate gave very similar results. Thus fora=200 nm
the force was 67.19 pN atT=300 K and 69.75 pN atT
=1 K, corresponding to a reduction of 3.7% at room tem-
perature. Ata=1 mm, the forces turned out to be the same
sto the accuracy of two decimalsd as in the Au-Au case.

In Fig. 3 we show, by the full line, how the force between
a gold sphere and a copper plate varies witha, at T=300 K.
The curve is calculated from Eq.s2.1d, using the empirical
data for these two materials directly. Our reason for giving
this curve anew, in spite of its identity with the curve in Fig.
1 for all practical purposes, is that we have supplied the
following new element, namely, at the bottom of the figure
we show explicitly the contribution from them=0 term to
the force. That is, for the MIM model in whichA0=1,B0
=0,Am=Bm=1 for mù1 f8g, we have for the free energy

bFMIM =
1

4p
E

0

`

q dq lns1 − e−2qad

+
1

p
o
m=1

` E
zm

`

q dq lns1 − e−2qad, s3.2d

showing them=0 contribution in the first term. Thus

bFMIM sm= 0d = −
zs3d

16pa2 , s3.3d

meaning that the corresponding force contribution
2pRFMIM sm=0d becomes

FIG. 2. Force difference DF= uFs1 Kdu
− uFs300 Kdu between a gold sphere and a gold
plate, versus gapa for R=296mm.
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FMIM sm= 0d = −
zs3d

8

R

ba2 . s3.4d

From the figure this term contributes an increasing part of
the total force for increasinga, and gives the full contribu-
tion in the classical limita→`.

We would like to make a direct comparison of our predic-
tion with the recent experiment of Deccaet al. f20,21g. This
experiment measured the Casimir force between a gold
sphere and a copper plate by means of a microelectrome-
chanical torsional oscillator, for separations in the range
0.2−2mm. The radius of the sphere was 296±2mm; thus
the same radius as we have assumed above. Their measured
values are shown, for instance, in Fig. 3 in Ref.f20g. How-
ever, the scale of their figure for the total force prevents
comparison with our numerical results with sufficient accu-
racy to draw firm conclusions about the magnitude of the
temperature dependence.

But Fig. 3 in Ref.f20g also gives a comparison with the-
oretical values by plotting the difference. These theoretical
values are evaluated atT=0, but as we do, they also use a
Drude model to obtain the dielectric constant in the limit of
low frequencies. Then they find a small temperature correc-
tion with the same sign as we have theoretically predicted.

From Fig. 3 in Ref.f20g we estimateDF to be around 1
pN for a=200 nm, and to be too small to be discernible for
large gaps,aù600 nmsthe scatter of the experimental points
is considerabled. This can be compared with our Fig. 2,
where we calculatedDF to be 2.56 pN fora=200 nm and
0.14 pN fora=1 mm. This reasonably good agreement be-
tween experimental and theoretical results is encouraging,
and it indicates that our finite temperature calculations are on
the right track.

We should also mention that Ref.f21g refers to dynamical
measurements that are claimed to rule out our results. How-
ever, we believe that the systematic theoretical and experi-
mental uncertainties in this measurement are larger than es-
timated by those authors. In particular, we reemphasize the

uncertainty of measuring the Casimir force due to uncertain-
ties in estimating a systematic shift of position as earlier
discussed by Iannuzziet al. f13g and Milton f1g, as men-
tioned in the Introduction.

IV. COMMENT UPON THE TRANSVERSE ELECTRIC
ZERO MODE

Bezerraet al. f14g claim that the Drude dielectric function
for metals cannot be used in the theory for the Casimir force.
Their opinion is that it violates the Nernst theorem in ther-
modynamics and is furthermore ruled out by a recent experi-
ment. Instead the plasma relation should be used for the di-
electric function. The latter implies the presence of a
transverse electric mode at zero frequency besides the static
dipole-dipole interaction; the latter being the zero frequency
limit of the transverse magnetic mode. Including such an
transverse electric mode adds a term linear in temperature to
the Casimir force by which it is increased by a factor of two
in the high temperature limit.

These authors point to the standard theory, sketched above
in Sec. II A where the relaxation parametern varies with
temperatureT and vanishes atT=0. This is then a situation
where in principle a transverse electric zero mode might be
present in the Casimir force although it should not be present
according to Maxwell’s equations of electromagnetism.
However, its presence forn=0, but not otherwise, would
make physical phenomena discontinuous as thenn=0 will
give something different from taking the limitn→0. Also
we question whether a possible vanishing of the relaxation
parameter atT=0 can dictate the behavior forT.0 where
n.0. sAs a remark we here note that strictly speaking the
statistical mechanical derivation is exact only for dielectric
functions independent of temperature, i.e., when induced di-
pole moments are harmonic oscillators. AT dependence re-
flects anharmonicity. But we do not expect that this is of
crucial significance here.d

As a result, Bezerraet al. f14g conclude that the Drude
dielectric function is thermodynamically inconsistent and

FIG. 3. ForceF between a gold sphere and a
copper plate versusa, when T=300 K and R
=296mm. Bottom curve is them=0 contribution.
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cannot be used to calculate the thermal Casimir force for
metals. However, we on the contrary have shown that it is
thermodynamically consistent leading to zero entropy atT
=0 in accordance with the Nernst theoremf8g. Thus, forT
.0 a negative entropy contribution due to electromagnetic
interaction between media is allowed as long as the total
entropy is positive. We have earlier studied a simplified
model in this regardf8g. The model consists of three har-
monic oscillators. Two of them are the analogs of the two
media that interact via the electromagnetic field represented
by the third oscillator.

In the beginning of their Sec. III, Bezerraet al. f14g state
that our derivations were based upon a constant relaxation
parametern. However, we did not require such a limitation,
only that ns0d is finite. And as the authors further note, the
value ofn is commonly very small, but nevertheless finite, at
T=0 due to impurities, and as a result the entropy becomes
zero atT=0 as required. Then they write that the negative
entropy we found atT=5310−4 K is a violation of the
Nernst theorem. But such a negative perturbing entropy is
not a violation of the Nernst theorem sinceT is finite as
already discussed above. The further discussion about relax-
ation time, impurities, and surface impedance does not in-
validate the use of a finitens0d.

These authors further remark that we consider nonzero
wave vectors k' for which the reflection coefficient
r'

2 s0,k'd=0. But this does not mean that reflection proper-
ties are different for the fluctuation field compared to real
photons as we deal with only one such quantity; and as dis-
cussed above, thermodynamics is not violated.sSee Sec. VI
below for further discussion ofk' dependence.d

They further note that a material with dielectric constant
«=100, like a metal, gives a Casimir force that decreases
with temperature in some interval and thus implies a nega-
tive entropy contribution. They conclude that such a material
cannot exist as it would violate thermodynamics. Then they
claim that real media with such large« are commonly polar
for which « rapidly reduces to its optical value connected to
its electronic polarizability. So with platesor plate-sphered
separation of 1mm the Casimir force again becomes mono-
tonically increasing withT. However, this does not preserve
the monotonic character of the Casimir force in general be-
cause one can just increase the plate separation. Nonmono-
tonic behavior will then reappear when this separation ex-
ceeds a wavelength corresponding to the relaxation
frequencyswhere« decreases rapidlyd.

In Sec. IV of their paper, they again conclude that the use
of the Drude dielectric function in the Lifshitz formula vio-
lates the third law of thermodynamicssthe Nernst heat theo-
remd. This conclusion, stated as a rigorous proof, is made on
the basis that the relaxation parameter will be much less than
the Matsubara frequencies. But this is not a rigorous proof as
the relaxation parameter will violate this inequality suffi-
ciently close toT=0 fassumingns0d.0g. Furthermore the
Drude dielectric function does not predict a linear tempera-
ture correction to the Casimir force all the way down to zero
temperature. As we have shown earlier the Casimir force
flattens out and becomes independent of temperature atT
=0 in accordance with thermodynamicsf8,9g. sBut the sharp-
ness of this flattening increases with decreasingn.d

We further remark that the use of the Drude dielectric
function is consistent with the«→` limit sfor large separa-
tion of the platesd. Use of the plasma modelsn=0d, however,
will give a discontinuous jump of the force in this limit. Such
a jump is not expected for a continuous change in a physical
parameter. Also for real metals the« effectively will be finite
due to the finite size of the plane-sphere configuration.sHere
one can note that a medium consisting of separate metal
spheres of finite size will be like a polarizable medium with
finite polarizability and dielectric constant.d

Finally the authors in Ref.f14g conclude that use of the
Drude dielectric functions2.6d is in contradiction with ex-
periment. However, so far as we can see, experiments per-
formed at a single temperature are at present too uncertain to
draw conclusions about temperature variations. This seems
even more evident from Ref.f12g. There detailed analysis of
experimental uncertainties are performed and various correc-
tions for very short separations are estimated. They find an
uncertainty of 1.75% at 95% confidence level for 62 nm
separation. This uncertainty increases to 37.3% for 200 nm.
Earlier it has been remarked by othersf13g that such experi-
ments are very sensitive to accurate determinations of plate
separation since the plate-sphere Casimir force is propor-
tional to the inverse cube of separation distance. However,
the authors assert that they avoid this problem by making a
least squares fit of the resulting data by which zero separa-
tion is pinpointed with an uncertainty of 0.15 nm. But in
view of the uncertainties of the experiment this does not
seem to resolve the disputed temperature dependence as
heavy weight is put on the shortest separation of 62 nm
where the force is by far the largest and changes most rap-
idly. Thus high apparent precision can be obtained for this
separations1.75%d while for larger separations the uncertain-
ties are rapidly increasing until they become larger than the
magnitude of the disputed thermal effect. According to the
authors of Ref.f12g the thermal effect in dispute is about
1–2 % for 62 nm.

Very recently, a paper has appearedf22g giving the micro-
scopic theory of the Casimir effect. These authors convinc-
ingly demonstrate that the TE zero mode cannot contribute,
although the plasma model gives such a contribution.

V. ANISOTROPIC PARTICLES WITH NEGATIVE CASIMIR
ENTROPY

As mentioned above the appearance of a negative Casimir
entropy for metals in a region of nonzero temperatures has
been disputed with the claim that it violates the Nernst theo-
rem of thermodynamicsf14g. However, as we argue this
negative entropy region does not imply violation of thermo-
dynamics since the Casimir free energy is a perturbing one
and is not the total free energy of two interacting systems.
Many such examples are known in statistical mechanics, in-
cluding that of three interacting oscillators discussed in Ref.
f8g. To illustrate this point, we here will consider a pair of
particles with strong anisotropic polarizability and thus po-
larizable only in thez direction, e.g., they may be metal
needles. The result for a pair of particles with isotropic po-
larizability is well known and was rederived in a different
way by Brevik and Høyef23g.
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The latter derivation is easily generalized to anisotropic
particles. Using the path integral formalism the dipole-dipole
interaction of the radiation field is given by Eq.sI5.9d. sHere
and below the numeral I refers to the equations of the refer-
ence mentioned.d EquationsI5.9d gives the interaction energy

bFs12d = h o
n=−`

`

fcDzn
srdDzn

s12d + cDzn
srdDzn

s12dga1zn
a2zn

*

s5.1d

with

Dzn
s12d = 3sr̂ · â1zn

dsr̂ · â2zn

* d − â1zn
· â2zn

* , s5.2d

Dzn
s12d = â1zn

· â2zn

* s5.3d

where the Matsubara frequencyzn=2pn/b. The dipole radi-
ating fieldsc are given insI5.10d. Carets denote unit vectors.
The âzn

are unit vectors of the Fourier-transformed fluctuat-
ing dipole moments along the “polymer” path andh→0 is
the discretized step length along the “polymers” that repre-
sent quantized particles in the path integral formalism.

The Casimir free energy times −2b is now obtained from
the average of expressions5.1d squared in accordance with
sI3.5d. For the isotropic case one has the averagehkazn

azn

* l
=3azn

whereazn
is the polarizability. This follows from Eq.

sI5.3d. For the strongly anisotropic situation to be considered
below one likewise will findsz denotes thez componentd

hkazzn
azzn

* l = azzn
s5.4d

as the only nonzero average, since polarizations in thex and
y directions are zero in the present case.

Furthermore let the positions of the particles relative to
each other be such that thez component ofr̂ equals 1/Î3.
With this theDzn

s12d will vanish as polarizations are present
only in thez direction.fWith this relative position the corre-
sponding electric field is transverse to thez direction and
thus to each of the dipole moments, i.e., there is no interac-
tion connected to theDzn

s12d term.g Thus only theDzn
s12d

term remains. So with polarizations restricted to thez direc-
tion Eq. sI5.14d turns into

− bF =
1

2o
n

azzn

2 cDzn

2 srd s5.5d

or with sI5.10d inserted the free energy is

F = −
1

br6 o
n=−`

` S2

3
t2D2

e−2tazzn

2 s5.6d

where

t =
2pr

b"c
unu s5.7d

as given bysI5.12d.
As usual Eq.s5.6d gives a negative free energy. However,

in the classical limitT→` the Casimir free energys5.6d, and
thus the corresponding force, both vanish since only then
=0 term will contribute. Furthermore with this free energy

the contribution to the entropy must be negativesor at least
mainly negatived asS=−]F /]T, becauseF must have a gen-
erally positive slope, butS=0 at T=0 as it should.

VI. SURFACE IMPEDANCE

Most recently, Mostepanenko and co-workersf14,24g, ap-
parently conceding that their arguments favoring the plasma
model over the Drude model for the dispersion relation for
real metals could not be supported either thermodynamically,
electrodynamically, or experimentally, have asserted that for
real metals one should use in the reflection coefficients in the
Lifshitz formula not the bulk dielectric permittivity but the
surface impedance. Indeed there is much to be said for using
the latter. However, in may be shown in general that there is
in fact no difference between the reflection coefficients com-
puted using either descriptionf9g. There is a one-to-one cor-
respondence between the permittivity« and the surface im-
pedanceZ, which is given by the ratio of the transverse
electric and magnetic fields at the surface. This correspon-
dence, however, necessitates in general that both quantities
possess dependence on the transverse momentumk'. As op-
tical data strongly suggest that this dependence is usually
negligible in the permittivity, a strong dependence onk' is
required inZ f9g,

ZTEsz,k'd = −
z

Îz2«sizd + k'
2

. s6.1d

The vanishing of 1+Zq/z at z=0 demonstrates again that the
TE zero mode does not contribute to the Casimir force.sNote
that this vanishing happens in the Drude but not the plasma
model.d In contrast, Refs.f14,24g completely disregard this
transverse momentum dependence and moreover make anad
hoc extrapolation from the infrared region to zero frequency
f1g. The inadequacy of neglecting the transverse momentum
dependence has been stressed by Esquivel and Svetovoy
f25g.

VII. CONCLUSIONS

In this paper we have sharpened our arguments in favor of
using real data for the dielectric functions to apply the Lif-
shitz formula to calculate the force between metal surfaces,
in particular between a spherical lens and a flat plate. In
principle, one can also use the surface impedance to calculate
this force, and although optical data are lacking for the latter,
such use should yield the same result. In contrast, the proce-
dures advocated in Refs.f12,14,18,20,21,24g containad hoc
elements and assumptions.

We show both by direct computation, and through analo-
gous models, that there is no conflict with thermodynamical
principles, in particular with the Nernst heat theoremsthe
third law of thermodynamicsd. Especially important is the
demonstration that the entropy necessarily vanishes at zero
temperature. Claims that experimental limits on Casimir
forces preclude our temperature dependencef20,21g are, in
our opinion, not justified, since the accuracy of the current
experiments does not match their precision, especially due to
the impossibility of determining the shortest separation dis-
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tances accurately. Undoubtedly, it will take dedicated experi-
ments involving different temperatures to reveal the true
temperature dependence of the Casimir effect. One idea
might be to measure the difference between the Casimir
forces for the same value ofa at two different temperatures,
for instance 300 and 350 K. Such difference is directly mea-
surable, in principle. To our knowledge this idea was origi-
nally proposed by Chenet al. f26g, and it was further dis-
cussed in Ref.f9g.
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